Скорость распространения гидравлической ударной волны в трубопроводе
Такая ситуация рассматривалась при выводе уравнения неразрывности потока в дифференциальной форме, с той только разницей, что там рассматривалось лишь изменение массы во времени, без учёта вызвавших это изменение причин
. По аналогии с приведённым уравнением запишем выражение, описывающее изменение массы за счёт изменения давления .Жидкость под действием указанного повышения давления устремится с некоторой скоростью а в слои с меньшим давлением, в которых также будет повышаться плотность и увеличиваться напряжение в стенках трубопровода, способствующее увеличению площади трубопровода. В связи с этим потребуется некоторое время на распространение этих деформаций вдоль трубопровода.
С другой стороны, перемещение массы dm за время dt происходит под влиянием результирующей Fр сил давления, действующих вдоль линии движения на торцовые поверхности цилиндрического объёма длиной L
В этом случае уравнение импульса силы может быть представлено в следующем виде
.Отсюда
.Имея в виду, что
, и подставив это в предыдущее выражение, получимЗаметим, что произведение
Приравняем оба выражения для и получим:
.
Выразим из последнего равенства величину a2
Разделим числитель и знаменатель на W, а первое слагаемое в знаменателе искусственно умножим и разделим на ?:
.
Обратим внимание на то, что а . После подстановки этих равенств в последнее выражение и извлечения корня получим выражение для скорости распространения ударной волны, которая, по сути, является скоростью распространения упругих деформаций жидкости в трубе.
Здесь первое слагаемое под корнем характеризует упругие свойства рабочей среды (жидкости), а – второе упругие силы материала трубы.
Как известно из гидростатики, сила, действующая на цилиндрическую поверхность, равна произведению давления на проекцию площади этой поверхности в направлении действия силы. На рассматриваемый участок трубы с толщиной стенок ?, длиной L и диаметром D действует изнутри давление P. Вследствие этого возникает разрывающая сила F, равная
.
В стенках трубы возникает сила сопротивления , равная произведению площади сечения стенок трубы на внутренние напряжения в материале стенок трубы, т.е.
.
Если приравнять две эти силы, получим равенство
,
из которого найдём выражение, определяющее внутреннее напряжение в стенках трубы :
Полагая, что относительное увеличение диаметра трубы, равное , прямо пропорционально напряжению в стенках трубы, можно записать
где Ет - коэффициент пропорциональности, который является модулем упругости материала трубы.
Из двух последних выражений следует, что абсолютное приращение радиуса сечения трубы может быть выражено формулой
Запишем выражение, определяющее увеличение площади сечения трубы:
где ? – начальная площадь сечения трубы,
?р – площадь сечения трубы при давлении P.
Пренебрегая малой величиной высшего порядка ?R2 и подставив выражение для ?R, получим
Продифференцировав это выражение по P и рассматривая ? как функцию, зависящую от P, получим:
В итоге слагаемое, описывающее упругие свойства материала трубы в выражении для скорости распространения ударной волны, можно представить в следующем виде:
Теперь рассмотрим слагаемое, описывающее упругость жидкости . Ранее при рассмотрении свойств жидкости было установлено, что если изменение объёма происходит за счёт изменения плотности, то можно определить коэффициент сжимаемости жидкости ?w:
Часто этот коэффициент выражают через обратную величину, называемую модулем упругости жидкости Eж, т. е.:
Отсюда следует, что второе слагаемое, характеризующее упругие свойства рабочей среды, может быть представлено в виде:
Таким образом, окончательно выражение для скорости распространения ударной волны в упругом трубопроводе можно переписать в следующем виде:
где - плотность жидкости,
D - диаметр трубопровода,
- толщина стенки трубопровода,
Ет – объёмный модуль упругости материала трубы,
Еж - объёмный модуль упругости жидкости.
Из формулы следует, что скорость распространения ударной волны зависит от сжимаемости жидкости и упругих деформаций материала трубопровода.